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1 Executive Summary

This Technical Report was developed in the framework of Component 3 of the second phase of
the Programme EUROCLIMA: “Sustainable Agriculture, Food Security and Climate Change in
Latin America: Strengthening the capacities of key stakeholders to adapt agriculture to climate
change and mitigate its effects”. EUROCLIMA is a regional cooperation program between
the European Union and Latin America that focus on climate change and was funded by DG
DEVCO/G3. It aims at facilitating the integration of mitigation and adaptation strategies into
climate change public policies and development plans in Latin America. In the framework of
EUROCLIMA, DG DEVCO established an Administrative Arrangement (AA) with the JRC (No.
2013/332-909, Jan. 2014 – Jan. 2017) to work on the topics of Desertification, Land Degradation
and Drought (DLDD), as well as on bio-physical modeling for crop yield estimation in Latin
America.

The contents reported in this document correspond to the Deliverable No. 7 of the AA
established between DG DEVCO and the JRC. This deliverable focused on the development of
models to map the geographic distribution and intensity of drought hazard, exposure, vulnerability
and risk for Latin America. Since absolute intensity of risk and its determinants is difficult to
quantify, here we focus on models of relative/standardized intensity, where each country (or sub-
national administrative region, or local area) is compared with each other and ranked according to
some predefined or empirically determined benchmark derived from the environmental, physical,
economic and social characteristics of the analyzed regions. Moreover, since the approach is
relative and Latin America is part of a global community that interact, share and support each
other social, economic and physically, we decided also to conduct our analysis from a global to a
continental perspective (in order to place Latin America in the globe), and finally to look at the
national and sub-national scales of risk and its determinants in Latin America.

Maps of drought risk have been elaborated at the sub-national level. To the best of our
knowledge, this is the first comprehensive and very detailed approach proposed in the literature.
Drought risk is computed as the the combination of three determinants, namely: hazard, exposure
and vulnerability. The calculation of drought determinants is also new and innovative. Each
determinant is calculated independently of each other and based on indicators of different spatial
resolutions. The major challenges were: the definition of a standard and effective Minimum
Mapping Unit (MMU) of analysis for deriving the final maps; the identification of a general
reference date; the selection, collection, and pre-processing of indicators, including normalization
to the same max-min range; the aggregation judgment and final combination of indicators.

Drought hazard was computed at the 0.5o. This determinant is based on the non-parametric
analysis of historical sequences of monthly precipitation deficits for the period between 1901-
2010. Precipitation totals are provided by the Global Precipitation Climatology Centre (GPCC)
through the free Full Data Reanalysis Version 6.0 gridded dataset. Drought hazard is estimated
for each grid point as the probability of exceedance the median global drought severity for the
period of analysis.

Drought exposure is computed at the sub-national level. It is based on spatially generalized
very high spatial resolution gridded indicators of population, agriculture, livestock and water
stress. The computation of exposure was based on a non-compensatory aggregation of indicators
by means of a non-parametric approach, namely the Data Envelopment Analysis (DEA). DEA is
a cost-effective means of screening the multivariate distribution of individual input indicators to
ensure that potential exposure is identified and its values are robust enough to provide a regional
rank that meets the worst-case conditions for timely warning and effective prevention of possible
disasters.

Drought vulnerability is derived from the arithmetic combination of high level factors of social,
economic and physical indicators, collected both at the national level and gridded layers of
very high spatial resolution. It is important to note that each factor is categorized by a single
explanatory value that is derived from multiple indicators, which are up- or down-scaled to the
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sub-national level and aggregated by means of a DEA model. The proposed 2-step approach
for deriving regional drought vulnerability follows the concept that people require a range of
“(semi-)independent” factors (characterized by a set of indicators) to achieve positive resilience
to impacts and that no single factor on its own is sufficient to yield all the many and varied
livelihood outcomes that people need to ensure survival.

While drought hazard has been computed on a method recently proposed at the JRC, several
approaches to the computation of drought exposure and vulnerability were needed to be for-
mulated, computed and compared by means of statistically sound techniques based on internal
validation judgments. The final selected models have the required statistical properties and the
spatial distribution of computed determinants match the overall patterns of elements at risk and
the propensity to drought impacts at the expected regions.

The proposed methodologies are robust, consistent, and accurate from the statistical viewpoint.
Nevertheless, it is important to highlight that the proposed approaches are fully data driven and
the final results can be biased by the uncertainties of input indicators and propagation errors
from their combination and aggregation. Although this is a very important point concerning the
quality of the final products derived with the proposed methodology, the accuracy assessment
of input indicators is out of the scope of this work and the methodological formulation and
development of drought risk and its determinants is independent of it.
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2 Introduction to Drought Risk

Drought is a recurring and extreme climate event that is originated by a temporary water deficit
and may be related to a lack of precipitation, soil moisture, streamflow, or any combination of
the three taking place at the same time. The immediate consequences of short-term (i.e. a few
weeks duration) droughts are, for example, a fall in crop production, poor pasture growth and a
decline in fodder supplies from crop residues, whereas prolonged water shortages (e.g. of several
months or years duration) may, among others, lead to a reduction on hydro-electrical production
and an increase of forest fire occurrences [3].

Drought is a complex process to model as it is not clear when it starts both in spatial and
temporal terms [4]. The same deficit in precipitation may not induce similar impacts depending
on types of soil, vegetation and agriculture as well as on differences in irrigation infrastructures
[5] [6] [7]. Moreover, casualties are not directly induced by physical drought but rather by
food insecurity which is not purely a natural hazard as it includes human induced causes (such
as conflicts, poor governance, etc.). However, a generic and comprehensive global approach
to drought risk management is nowadays critical for many regions in the world that have a
strong dependency on rain-fed agriculture and are affected by food insecurity, such as at several
Asian, African and South-Central American countries. Moreover, these regions depend on
hydroelectricity and biomass as main sources of energy and droughts directly impact on their
economic and social development [8]. In the case of rich nations, drought also poses a big challenge
to risk managers, as it: arouses groundwater contamination, leads to an exhaustion of water
supplies supporting large scale industry, degrades landscape functioning, limits transportation
and diminishes tourism and recreation, raises conflicts over environmental issues such as the
protection of catchments, and reduces reservoir capacity for serving growing urban populations
[9].

Drought risk is the probability of harmful consequences, or expected losses resulting from
interactions between drought hazard (i.e. the possible future occurrence of drought events or
rareness of a single event), drought exposure (i.e. the total population, its livelihoods and assets
in an area in which drought hazard events may occur), and drought vulnerability (i.e. the
propensity of exposed elements to suffer adverse effects when impacted by a drought event)
[10]. As drought hazard is increasing globally due to anthropogenic warming activities and
certain tasks, such as distributive policies (e.g. relief aid, regulatory exemptions, or preparedness
investments), require information on drought exposure and vulnerability comparable across
different climatic regions, greater attention has been directed recently to the development of
methods for standardized quantification of drought risk [7].

In this study we, therefore, concentrate on a methodology for mapping the global distribution
of drought risk, based on the combination of independent indicators of historical drought hazard
and current estimates of drought exposure and vulnerability, as previously suggested by [11] and
[12]. Drought risk is computed as [13]:

Risk = Hazard × Exposure × V ulnerability (2.1)

The hazard drought model considers the historical distribution of standardized precipitation
deficits, namely their frequency, duration and severity for a region. Since precipitation is the
primary variable limiting the water available to the coupled human-environment system, then it is
considered as the main factor of drought hazard. To compute hazard, we use a new Meteorological
Drought Severity Index (MDSI) [14]. The MDSI is standardized in space and time, and considers
the relative monthly precipitation deficits and the seasonal influence of precipitation regimes to
meteorological drought severity computation. The motivation for using the MDSI is twofold:

1. the observation that primitive indices of drought severity directly measure local precipitation
shortages and cannot be compared geographically; and that
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2. standardized indices of drought do not take into account the intra-annual variability of
precipitation in estimating the severity of events that can impact on seasonal activities.

Exposure to some natural hazard may be described as “being in the wrong place at the
wrong time” [1]. In the case of drought, exposure is determined by several indicators, such as
population and livestock density, exploitation of land for agriculture, as well as water withdrawals
for domestic and industrial sectors, to cite but a few. The major challenge is to define whether
values of one indicator can be traded for values of another indicator in the model configuration
or not. Usually, exposure to drought concentrates on life losses and the model is simplified to
the ordered rank of one simple indicator for regional comparisons, e.g. [15]. Here we propose a
multivariate model that is built on both available and newly created spatially continuous global
datasets.

The central function of vulnerability analysis is to identify territories where people will be most
dramatically affected by a drought and to analyze the reasons why these groups are less able then
others to cope with the impact of the hazard [16]. Therefore, the definition of vulnerability to
drought being adopted in this work is similar to the developments of [17] and reflects the complex
interactions between social (e.g. education, health) and financial (e.g. energy consumption,
poverty headcount ratio) factors assessed at the national scale, as well as a physical factor (e.g.
infrastructures such as roads and irrigation mechanisms) mapped at the sub-national scale.

This technical report describes the data sources and calculations for Global Drought Hazard,
Exposure, Vulnerability and Risk Mapping. It includes the steps of data collection, pre-processing,
models formulation, validation and testing.
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3 Modeling the Determinants of Drought Risk

The term risk refers to the expected losses from a particular hazard to a specified element at risk
in a particular future time period [18]. “Losses may be estimated in terms of human lives, or
buildings destroyed or in financial terms” [13] [19]. There are different challenges when comparing
risk levels for different regions, e.g. how to compare large regions with small ones, or how to
compare regions affected by earthquakes and those affected by droughts? Because of the specific
nature of each hazard type (rapidity of onset, spatial extent and destruction potential), exposures
to different hazard types cannot be easily compared. Being affected by drought differs drastically
from being exposed to earthquakes. In the first case, infrastructures generally do not suffer, the
impact is slow and gradual, but the duration is long, while the inverse is true for earthquakes.
Standard and comparable models of hazard, exposure, vulnerability and risk to drought at the
sub-national level have been estimated globally by means of statistical analyzes and Geographical
Information Systems (GIS) techniques that are presented in this section.

3.1 Drought Hazard

3.1.1 The hazard model

The hazard occurrence at a given location refers to the frequency or returning period of the
hazard at a given magnitude [18]. Here, drought hazard is computed as the probability of
exceedance (Pe) the median severity of global historical drought events, where Pe = 1− Pc, and
Pc is the probability of non-exceedance the median severity of global historical drought events at
a given location. The computation of drought hazard follows a four-stage process [14]:

1. For every month and geographic location, the non-parametric “Fisher-Jenks” algorithm is
used to estimate a threshold level that optimizes the partition of historical precipitation
data observations below the median into j categories of “drought” and “non-drought”
(Figure 3.1). Whereas the median of historical precipitation observations is the “best guess”
of unknown “normal” climatological precipitation conditions for each month and location,
0 corresponds to the most extreme deficit that can be verified at any time and location
[7]. The “Fisher-Jenks” method aims at estimating a monthly threshold value, PrcThrm
(1 ≤ m ≤ 12 months), that minimizes the sum of absolute precipitation deviations about
the gravity center of each j category. PrcThrm is defined in the range between 0 and the
median of historical monthly precipitation, ˜Prcm, and as is computed as follows:

k∑
j=1

Nm,j∑
n=1

|Prcm,n,j − ˜Prcm,j |, (3.1)

where Nm,j = total number of years with precipitation observations below the median of
month m and classified in category j; Prcm,n,j = precipitation observation in category j,
year n and month m; and ˜Prcm,j= median of monthly precipitation observations m in
category j.

2. In the sequence, for each month m in year n, relative precipitation deficits, 4Prct, within
the range 0 – 1, are computed as follows:

4Prct =

{
PrcThrm−Prcm,n

PrcThrm
if Prcm,n < PrcThrm

0 if Prcm,n ≥ PrcThrm
, (3.2)

A drought starts at month m and year n if Prcm,n =< PrcThrm (red open circles in
Fig. 3.2); if Prcm,n = 0 then 4Prct = 1 and the relative monthly precipitation deficit is
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Figure 3.1: Computation of thresholds of monthly drought onset: (1) estimation of the median monthly
precipitation totals from an historical time series; (2) “Fisher-Jenks” optimization of the
drought threshold level for January; and (3) standardized drought threshold levels optimized
for representative months in Latin America.

maximum (not shown in Fig. 3.2); if Prcm,n ≥ PrcThrm then 4Prct = 0 and monthly
precipitation totals are within the normal climatological conditions for the region (blue
open circles in Fig. 3.2).

Figure 3.2: Onset and end of a drought event.

3. The next step is the calculation of the Meteorological Drought Severity Index (MDSI) [14]
for all droughts that occurred worldwide in a specified historical period, as follows:

MDSI =

{n,m}e∑
t={n,m}o

4Prct ×Wm , (3.3)

where {n,m}o and {n,m}e are, respectively, the onset and end months of a drought period
(March and June in Fig. 3.2). In the case presented in Fig. 3.2, {n,m}o = March, 2010
and {n,m}e = June, 2010. Wm is a variables that compensates for the differences in the
absolute amount of monthly precipitation deficits in regions with recurring dry and/or wet

6



seasons. It is used to give more influence to the annually recurring period(s) of one or
more months when most of precipitation occurs. Wm standardizes the relative monthly
precipitation deficits for the computation of drought severity for each location and is defined
as follows:

Wm =
PrcThrm∑12

m=1 PrcThrm
. (3.4)

where by definition: Wm ≥ 0 and W1 +W2 + · · ·+W12 = 1. The practical use of Wm is
illustrated for the case presented in Fig. 3.2: for the same 4Prct, the month of March has
an influence larger than June on drought severity because W3 = 0.14�W6 = 0.04.

4. Finally, for each geographic location, drought hazard is computed by comparing the Global
and Local Empirical Cumulative Distribution functions (ECDFs) of drought severity for
p(MDSIglobal) and estimating Pe = 1− Pc, as present in Fig. 3.3 for Latin America.

Figure 3.3: The computation of drought hazard: (left) number of drought events for Latin America in
the period between 1902-2010; (right) probability of exceedance the median global drought
severity for two grid points in the region.

3.1.2 The precipitation dataset

The calculation of drought hazard is performed with monthly precipitation totals from the global
free gridded dataset Full Data Reanalysis Version 6.0 provided by the Global Precipitation
Climatology Centre (GPCC) of the German Weather Service (Deutscher Wetterdienst, DWD
[20]. This choice is based on three main reasons: first, it is a spatially interpolated dataset based
on the highest number of collected precipitation records; second, it spans from January 1901 to
December 2010 and all grid points have no missing data after January 1951; third, this dataset
has been used in many drought-related studies from regional to global scales.

Version 6.0 is based on the merging of data series from rain-gauges built from Global-
Telecommunication-System-based data and historic data records. The dataset comprises a
world-wide total of more than 67,000 stations that feature record durations of at least 10 years
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or longer. It contains the monthly precipitation totals on regular grids with a spatial resolution
of 0.5o× 0.5o, 1.0o× 1.0o, and 2.5o× 2.5o. The high-resolution monthly product (0.5o× 0.5o) was
selected for the analysis, since it allows better analyzing the regional drought patterns. Some
problems were found in the regions with less data coverage, namely Greenland, Arctic areas,
Sahara Desert, Tibetan Plateau, Mexico and high-elevation points in Chile. However, the outliers
were extremely rare (< 0.15%).

3.2 Drought Exposure

Drought exposure is derived from the combination of a set of quantitative indicators mapping the
distribution of population and assets or goods that can be affected by both short- and long-term
drought events. In this work, a special attention is given to agricultural assets, as these are
highly dependent of precipitation availability and short-term deficits can seriously damage crop
production. Nevertheless, other sectors of activity, such as water consumption for livestock
production and industrial water pressure are also considered. The exposure of ecological units or
natural habitats is not foreseen in this compendium.

3.2.1 Compensatory and non-compensatory models of drought exposure

When developing a model of exposure to drought based on the combination of a set of simple indi-
cators, two types of judgment can be considered and tested: compensatory or non-compensatory
[21]. A compensatory or non-compensatory distinction can be made on the basis of whether
values of one indicator can be traded for values of another indicator in the model configuration
or not. For more details see, e.g. the following notes:

https://www.youtube.com/watch?v=CKM9u65kZHg

http://www.deafrontier.net/deaintro.html

http://www.mycbbook.com/MYCBBook-Consumer-Decision-Judgment-Models.pdf

In a compensatory model, drought exposure is ranked by considering all of the indicators’
values and by trading off the region’s high value on one or more indicators with its lower values
on other indicators. Most common compensatory models are based on additive methods, such as
the simple sum or average of input indicators, as follows [17]:

CompExp =
n∑

i=1

Indi ×Wi , (3.5)

where Wi is the weight assigned to indicator Indi (with
∑
Wi = 1). These models are

compensatory because a shortfall on one indicator may be compensated by an high value on
other indicator.

When a set of indicators are used to evaluate the exposure to drought on a set of regions,
some may be in favor of one particular region, while others will favor another. As a consequence,
a conflict among the indicators could arise. For example, a region might be 100% covered by
rainfed crops with no livestock or population being set there. In the non-compensatory model
a superiority in one indicator cannot be offset by an inferiority in some other indicator(s). In
words, we consider that a region is highly exposed to drought if at least one of the assets is highly
represented there. In the compensatory model, a region would attain maximum exposure only
in the case that it was entirely occupied by agriculture and at the same time being the most
populated area and larger livestock producing region in the world. This is physically impossible.
Therefore, in a non compensatory approach each indicator stands on its own and a conflict
can be easily treated by taking into account the absence of preferential independence within a
discrete multi-criteria approach. Among different non-compensatory methods, Data Envelopment
Analysis (DEA) [22] [23] is a non-parametric approach that can be used for estimating an
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efficiency multidimensional frontier of maximum drought exposure in the sample dataset and to
measure the relative exposure of different regions to drought. The following assumptions are
made for DEA benchmark and ranking [24]:

• The higher the value of a given indicator, the more exposure for the corresponding region;

• Non-discrimination of regions that are the most exposed in a single indicator, thus ranking
them equally;

• A linear combination of the best performers is feasible, i.e. convexity of the frontier.

The relative exposure of each region with respect to the benchmark of maximum exposure to
drought in the sample dataset, is determined by the location of the region and its multidimensional
distance relative to the DEA frontier. Both issues are represented in Figure 3.4 for the simple
case of six regions (P1, P2, ..., P6) and two abstract indicators (y1 and y2) that are represented
in the two axes. Regions will be ranked according to their score in each of the indicators. The
line connecting countries P1, P2, P3 and P4 (that has been notionally extended to the axes by
the lines “P1y2′” and “P4y1′” to enclose the entire dataset) constitutes the performance frontier
(i.e. maximum exposure among the regions represented in the dataset) and the benchmark for
regions P5 and P6 which lie below that frontier. The countries supporting the frontier are
classified as the most exposed according to their values in both axes. The most exposed regions
will have a performance score of 1, while regions P5 and P6, which are within this envelope, are
less exposed than the others and score values between 0 and 1.

Figure 3.4: Computation of a performance frontier in a simulated Data Envelopment Analysis (DEA)
for six regions and two indicators.

The non-compensatory exposure values can be computed with DEA for regions P5 and P6, as
follows [24]:

nCompExp = 0Pj/0P ′j , (3.6)

where 0Pj is the multivariate distance between the origin and the actual observed region j,
and 0P ′j is the distance between the origin and the projected region in the frontier of maximum
exposure. The exposure value for these regions depends on their position with respect to the
frontier, while the benchmark will correspond to the worst situation according to the values of
the other regions measured in the set of the same indicators. 0P ′j is always estimated as the
shortest distance between the origin and the frontier when crossing Pj. In the example shown
in Figure 3.4, the distance from the origin to P ′5 is shorter than that to P ′′5 and is the one
considered by DEA for computing the respective exposure, as shown in Figure 3.4.
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3.2.2 Geographic layers of population, livestock, agriculture and water stress

Compensatory and non-compensatory models of drought exposure will be computed on the basis
of four geographic layers that completely cover the global land surface. These layers are:

• Population Count

– Description: The population count grid, consists of estimates of the number of persons
per 30 arc-second grid cell for 2010.

– Authors: Balk, D.L., U. Deichmann, G. Yetman, F. Pozzi, S.I. Hay, and A. Nelson.

– Title of publication: Gridded Population of the World, Version 4 (GPWv4), Prelimi-
nary Release 2.

– Year of publication: 2014.

– URL: http://www.ciesin.columbia.edu/data/gpw-v4.

– Resolution: 30 arc-second raster (about 1x1 km at the equator).

• Gridded Livestock of the World (GLW)

– Description: Modelled livestock densities of the world, adjusted to match official
(FAOSTAT) national estimates for the reference year 2005.

– Authors: Timothy P. Robinson, G. R. William Wint, Giulia Conchedda, Thomas P.
Van Boeckel, Valentina Ercoli, Elisa Palamara, Giuseppina Cinardi, Laura DAietti,
Simon I. Hay, Marius Gilbert.

– Title of publication: Mapping the Global Distribution of Livestock.

– Year of publication: 2014.

– URL: doi:10.1371/journal.pone.0096084.

– Resolution: 3 arc minute raster (about 5x5 km at the equator).

• Global agricultural land cover data set

– Description: Estimated percentage of surface land covered by croplands and pas-
tures circa 2000, derived from automatic classification of satellite-derived data and
agricultural inventory data.

– Authors: Navin Ramankutty, Amato T. Evan, Chad Monfreda, and Jonathan A.
Foley.

– Title of publication: Farming the planet: 1. Geographic distribution of global agricul-
tural lands in the year 2000.

– Year of publication: 2008.

– URL: doi:10.1029/2007GB002952.

– Resolution: 5 arc minute raster (about 10x10 km at the equator).

• Baseline Water Stress

– Description: Total annual water withdrawals (municipal and industrial) expressed as
a percent of the total annual available flow; higher values indicate more competition
among users.

– Authors: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao.

– Title of publication: Aqueduct Global Maps 2.1. Working Paper.

– Year of publication: 2014.

– URL: http://www.wri.org/publication/aqueduct-metadata-global.

– Resolution: Hydrological catchment.
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3.3 Drought Vulnerability

The last determinant of drought risk, vulnerability, is less easily apprehended. Vulnerability
depends critically on the context of the analysis, and the factors that make a system vulnerable
to a natural hazard will depend on the nature of the system and the type of hazard in question.
The factors that make a rural community in semi-arid Africa vulnerable to drought will not be
identical to those that make areas of a wealthy industrialized nation, such as Norway, vulnerable
to flooding, wind storms and other extreme weather events. Nonetheless, there are certain factors
that are likely to influence vulnerability to some specific hazard in different geographical and
socio-political contexts [25]. These are developmental factors including indicators such as poverty,
health status, economic inequality and elements of governance, to cite but a few. Although
the relative importance of different factors will exhibit some geographic variation, such factors
may be viewed as the foundation of specific measures for reducing vulnerability and facilitating
adaptation to drought.

3.3.1 Social, economic and physical factors of drought vulnerability

To compute a global map of drought vulnerability, we followed a framework similar to the UN
International Strategy for Disaster Reduction (UN/ISDR) [1], where this determinant of risk is a
reflection of the state of the individual and collective physical, social and economic conditions
of a region at hand. Figure 3.5 illustrates the three broad factors in which different aspects of
vulnerability can be grouped, depicted by intersecting circles to show that all spheres interact
with each other.

Figure 3.5: Vulnerability factors and possible levels of interaction. Adapted from [1].

The framework proposed by [1] considers each factor as an individual dimension that reflect
the essential conceptual aspects of a civil society and can be used independently as a guidelines to
stakeholders, policymakers and practitioners alike. The adopted approach allows the evaluation
of the strengths and weaknesses of each factor to the total vulnerability score in a region.
Social vulnerability is linked to the level of well-being of individuals, communities and society;
economic vulnerability is highly dependent upon the economic status of individuals, communities
and nations; physical vulnerability comprises the basic infrastructures needed to support the
production of goods and sustainability of livelihoods [26].
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Vulnerability to drought is computed based on a 2-step composite indicator that derives from
the aggregation of indicators characterizing the three factors previously indicated in Figure 3.5:
economic, social and physical. In the first step, indicators for each factor are combined using, for
example, compensatory or non-compensatory approaches, as previously discussed in sub-section
3.2. In the second step, individual factors are aggregated into a composite index of vulnerability
by using, e.g. a geometric mean (as similar as to the Human Development Index [27]), a weighted
arithmetic mean (as similar as to the Drought Vulnerability Index (DVI) [17]) or the product
(as similar as to Multidimensional Poverty Index (MPI) [28]). In this report, we formulate,
evaluate and select a combined indicator of vulnerability to drought by testing and comparing
eight different composite schemes, as follows:

1. Compensatory Average model of indicators within each factor:

a) Geometric aggregation of factors:

gCompV uln = 3

√√√√(nSoc∑
i=1

Indi ×Wi

)
×

(
nEcon∑
i=1

Indi ×Wi

)
×

(
nPhys∑
i=1

Indi ×Wi

)
, (3.7)

b) Arithmetic aggregation of factors:

aCompV uln =

(∑nSoc
i=1 Indi ×Wi

)
+
(∑nEcon

i=1 Indi ×Wi

)
+
(∑nPhys

i=1 Indi ×Wi

)
3

,

(3.8)

c) Weighted Arithmetic aggregation of factors:

waCompV uln =

(
nSoc∑
i=1

Indi ×Wi

)
× (nSoc/ (nSoc+ nEcon+ nPhys)) +

+

(
nEcon∑
i=1

Indi ×Wi

)
× (nEcon/ (nSoc+ nEcon+ nPhys)) +

+

(
nPhys∑
i=1

Indi ×Wi

)
× (nPhys/ (nSoc+ nEcon+ nPhys)) ,

(3.9)

d) Product aggregation of factors:

pCompV uln =

(
nSoc∑
i=1

Indi ×Wi

)
×

(
nEcon∑
i=1

Indi ×Wi

)
×

(
nPhys∑
i=1

Indi ×Wi

)
. (3.10)

2. Non-Compensatory DEA model of indicators within each factor:

a) Geometric aggregation of factors:

gnCompV uln = 3
√
DEAsoc×DEAecon×DEAphys , (3.11)

b) Arithmetic aggregation of factors:

anCompV uln =
DEAsoc×DEAecon×DEAphys

3
, (3.12)

c) Weighted Arithmetic aggregation of factors:

wanCompV uln = DEAsoc× (nSoc/ (nSoc+ nEcon+ nPhys)) +

+DEAecon× (nEcon/ (nSoc+ nEcon+ nPhys)) +

+DEAphys× (nPhys/ (nSoc+ nEcon+ nPhys)) ,

(3.13)

d) Product aggregation of factors:

pnCompV uln = DEAsoc×DEAecon×DEAphys . (3.14)
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3.3.2 National and sub-national indicators of vulnerability

As mentioned in the previous section, vulnerability to drought is quantified by means of social,
economic and physical factors, which indicators are chosen to reflect the level of quality of different
constituents of a civil society. Each factor is characterized by a set of simple indicators that are
generalized at the national and sub-national scales. Fifteen indicators selected in accordance
with the works published by, e.g. [26] [25] [17] and [28], to cite but a few, are distributed among
the three factors according to Table 3.1.

Table 3.1: Indicators of drought vulnerability in detail: corresponding factors, data sources, reference
dates and correlation to the overall vulnerability.

Factors Indicator Resolution Corr Year Source1

Economic * Energy Consumption per Capita (Mil-
lion Btu per Person)

Country Neg 2011 U.S. EIA

* Agriculture (% of GDP) Country Pos 2005-2014 World
Bank

* GDP per capita (current US$) Country Neg 2005-2014 World
Bank

* Poverty headcount ratio at $1.25 a day
(PPP) (% of population)

Country Pos 2005-2014 World
Bank

Social * Rural population (% of total popula-
tion)

Country Pos 2005-2014 World
Bank

* Literacy rate (% of people ages 15 and
above)

Country Neg 2005-2014 World
Bank

* Improved water source (% of rural pop-
ulation with access)

Country Neg 2005-2014 World
Bank

* Life expectancy at birth (years) Country Neg 2005-2014 World
Bank

* Population ages 15-64 (% of total) Country Neg 2005-2014 World
Bank

* Refugee population by country or terri-
tory of asylum (%)

Country Pos 2005-2014 World
Bank

* Government Effectiveness Country Neg 2013 WGI

* Disaster Prevention Preparedness
(OECD, DAC), $ Year/capita

Country Neg 2005-2014 OECD

Physical * Agricultural irrigated land (% of total
agricultural land)

5 arc minute
raster

Neg 2008 FAO

* % of retained renewable water Hydrological
catchment

Neg 2010 Aquastat

* Road density (km of road per 100 sq.
km of land area)

Vector Neg 1980 - 2010 gROADSv1

1Sources:
World Bank, http://data.worldbank.org/products/wdi

U.S. Energy Information Administration (EIA), http://www.eia.gov/

Worldwide Governance Indicators (WGI), http://info.worldbank.org/governance/wgi/index.aspx#
home

Organisation for Economic Co-operation and Development (OECD), http://stats.oecd.org/

Food Aagriculture Organization (FAO), http://www.fao.org/nr/water/aquastat/main/index.stm

Aquastat, http://www.wri.org/our-work/project/aqueduct

Global Roads Open Access Data Set (gROADSv1), http://sedac.ciesin.columbia.edu/data/set/
groads-global-roads-open-access-v1
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4 Computation and validation of drought exposure and
vulnerability models

Several approaches to computing drought exposure and vulnerability were tested and compared
in order to select the most reliable model for the estimation of the determinants of risk at the
global scale. The approaches tested for computing drought exposure and vulnerability were
described, respectively, in subsections 3.2.1 and 3.3. Next, we describe the dataset used to make
the minimum mapping unit (MMU) uniform for all geographic layers, the selection process of
countries and sub-national regions for the analysis and the normalization of indicators. In the
sequence, we describe the methodology used for comparing the models of drought exposure and
vulnerability, as well as the criteria for selecting the final approaches.

4.1 Minimum Mapping Unit of Analysis and Geographic Generalization of
Indicators

Global models of drought exposure and vulnerability were computed for sub-national administra-
tive regions. There are three main reasons:

• Raster layers of exposure indicators and indicators of physical vulnerability have different
spatial resolutions that need to be harmonized to a common MMU. The spatial gener-
alization of these layers to the sub-national administrative regions is applied because it
minimizes the propagation of geographic errors from each indicator during the construction
of the model;

• Information for administrative regions is easily apprehended and handled by stakeholders
and policymakers within drought early warning systems;

• National and international funding for prevention, mitigation and recovery from the impacts
of natural hazards are mainly distributed through administrative regions.

To globally summarize the raster values of exposure indicators and indicators of physical
vulnerability at the the first level of sub-national administrative regions, we used the Global
Administrative Unit Layers (GAUL) Release 2015, an initiative implemented by FAO within
the Bill & Melinda Gates Foundation, Agricultural Market Information System (AMIS) and
AfricaFertilizer.org projects. The GAUL compiles and disseminates the best available information
on administrative units for all the countries in the world, providing a contribution to the
standardization of the spatial dataset representing administrative units. The GAUL always
maintains global layers with a unified coding system at country, first (e.g. departments) and
second administrative levels (e.g. districts). For more information, please visit GAUL online at
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691.

4.2 Excluding Countries and other Official Territories

Models of exposure and vulnerability were computed and evaluated on the basis of 170 countries
and 2515 sub-national administrative regions (Figure 4.1). Countries, sub-national regions and
other official territories were excluded from the analysis if:

• Are not covered by geographic layers of exposure and/or physical vulnerability;

• Are entirely covered by surface water bodies;

• Are not described by social and/or economical indicators of drought vulnerability;

• Are part, commonwealth, territory or dependency of other countries, such as Isle of Man,
French Polynesia, or Macao, to cite but a few;
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• Are classified as very arid or extremely cold areas - please see subsection 4.2.1;

Figure 4.1: Excluded sub-national regions: green areas.

4.2.1 Masking very arid and extremely cold regions

Very arid and cold areas were excluded from the computations. It was assumed that dealing with
drought concepts in extremely dry regions would be physically meaningless. In order to exclude
areas by means of an objective methodology, a combination of conditions derived from three
different indicators was used. First, areas where one or more months show more than 25% zero
values of cumulated precipitation were excluded. This avoids computing biased SPI-12 records
based on Gamma distributions constructed over an insufficient number of values.

Second, the arid areas have been excluded using the FAO Aridity Index (AI [29], computed as the
ratio between the annual cumulated precipitation and the annual cumulated evapotranspiration
(ET). For simplicity, ET was replaced by potential evapotranspiration (PET). One single AI value,
related to the average of sixty annual AI values from 1951 to 2010, was assigned to each grid
point. According to the AI classification, global areas are divided into: humid (AI> 0.75), sub-
humid (0.65 <AI≤ 0.75), dry (0.5 <AI≤ 0.65), semi-arid (0.2 <AI≤ 0.5), arid (0.05 <AI≤ 0.2),
hyper-arid (0.03 <AI≤ 0.05), and desert (AI≤ 0.03). Areas with AI≤ 0.05 were excluded from
the analysis.

Third, the cold areas have been excluded using the annual PET: if the average PET between
1951 and 2010 was smaller than 365 mm, the drought variables for the corresponding grid points
were not computed. Moreover, Antarctica was labeled as cold land and cut off from the maps.
To calculate PET and consequently AI, we used the CRU TS v3.2 dataset (Climate Research
Unit Time Series [30]) of the University of East Anglia. A similar land-masking strategy was
used by [31] for drought monitoring based on a special indicator derived from a merging of SPI
and SPEI.

While the total emerged lands of the Earth sum up to 148.94× 106km2 [32], the presented
drought maps take into account approximately 100.35× 106km2, which corresponds to 67% of
the total emerged lands or to 74% if Antarctica (about 14× 106km2) is not considered (Figure
4.2).
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Figure 4.2: Mask of very arid and extremely cold regions: red areas.

4.3 Normalization of indicators

After summarizing raw values of indicators of drought exposure (subsection 3.2.2) and drought
vulnerability (subsection 3.3.2) for all sub-national administrative regions of first level, as defined
in GAUL and not removed by the process defined in subsection 4.2, we normalized indicators
among regions for display and aggregation. The normalization has been made taking into account
the maximum and minimum value of each indicator across all regions in order to guarantee
that indicators have an identical range between 0 and 1 and the same variance for computing
exposure and factors of vulnerability [24]. Regarding indicators of exposure and those with a
positive correlation to the overall vulnerability (see Table 3.1), the normalized value is calculated
according to the general linear transformation, as follows [17]:

Zi =
Xi −Xmin

Xmax −Xmin
, (4.1)

where Xi represents the indicator value for a generic sub-national region i, Xmin and Xmax

the respective minimum and maximum value across all regions. In some cases there is an inverse
relationship between vulnerability and indicators (e.g. GDP per capita, adult literacy rate, or
road density). For indicators with negative correlation to the overall vulnerability (see Table
3.1), a transformation was applied to link the lowest indicator values with the highest values of
vulnerability, as follows [17]:

Zi = 1− Xi −Xmin

Xmax −Xmin
, (4.2)

4.4 Sensitivity analysis and model selection criteria

A sensitivity analysis was undertaken in order to assess the robustness of the predictive models
of drought exposure and vulnerability. Sensitivity analysis is the study of how the uncertainty in
the output of a mathematical model or system (numerical or otherwise) can be apportioned to
different sources of uncertainty in its inputs, namely indicators, weighting and aggregation schemes
[33]. This examination was conducted for the models of drought exposure and vulnerability that
were described, respectively, in subsections 3.2.1 and 3.3. The main decisions tested were:
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1. Multivariate ranking of exposure and vulnerability factors based on compensatory and
non-compensatory judgment of respective indicators;

2. Aggregation of vulnerability factors according to geometrical, arithmetic and product
frameworks.

Weighting of factors and indicators was not considered as all indicators and factors are assumed
to contribute equally for the respective models. Weights can be better assigned through expert
knowledge, which was not part of this global drought risk mapping effort.

The order and stability of exposure and vulnerability rankings assigned by compensatory and
non-compensatory judgments and aggregation schemes to a given sub-national administrative
region i, respectively denoted by Rank(ModExpi) and Rank(ModV uli), are indicators of the
robustness of the estimations [17]. For the case of exposure, and as mentioned in subsection
3.2.1, it is expected that an higher value in one indicator cannot be offset by a lower value in
some other indicator(s). In other words, we consider that a region is highly exposed to drought
if at least one of the assets is highly represented there. Therefore, the selection criteria between
compensatory/non-compensatory models of exposure indicators is based on the correlation (ρ)
between Rank(ModExpi) and maxi{Zk,i} as follows:

ρ(max
i
{Zk,i}, Rank(ModExpi)) =

Cov(maxi{Zk,i}, Rank(ModExpi))√
Var(maxi{Zk,i})Var(Rank(ModExpi))

, (4.3)

where {Zk,i} corresponds to the set o k normalized exposure indicators in region i. A larger
correlation implies that the model is able to more accurately capture regions of high exposure,
independently of being exposed in one, few or many indicators.

Regarding vulnerability, the selection criteria for the best model is internal and based on the
minimum distance between each of the regional rankings estimated through the eight models
presented in subsection 3.3 and the median regional ranking of the ensemble set defined by the
outputs of all models. For example, for model gCompV uln defined in Eq. 3.7, the distance
criteria RgCompV uln for its evaluation and comparison with the other models is computed as:

RgCompV uln =
1

N

N∑
i=1

|medRi −Ri,gCompV uln| , (4.4)

where medRi is the median of the ensemble of ranks computed for region i with all the models
presented in subsection 3.3, and Ri,gCompV uln is the rank estimated by gCompV uln for the same
region i. Among different possibilities, we used the distance to the median baseline scenario
for selecting the best model. The median is a non-parametric sample statistic and an unbiased
reference of central location for any statistical distribution [34]. We decided to use the median
rank of regional vulnerability, instead of the mean, because there are few models available (only
8) to derive parametric sample statistics for each region.
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5 Results and Discussion

In this section, we present the global maps for each of the determinants of risk, as well as the
results of the sensibility analysis performed for choosing among the best models of drought
exposure and vulnerability.

5.1 Drought Hazard

Figure 5.1 shows the world map of drought hazard computed for the events taking place in the
period between January 1901 and December 2010. Overall, it is noticeable a match between the
geographic distribution of global drought hazard, as computed with the MDSI, and the wide
range of global aridity classes, as depicted by the global map of aridity (Figure 5.2) computed
with the aridity index classification proposed by [2]. In detail, drought hazard is generally
high for semiarid areas, such as Northeastern and Southern South America, Northern, Eastern,
Southwestern and Horn of Africa, Central Asia, Australia, West U.S. and the Iberian Peninsula.
In opposition, drought hazard is low for tropical regions, such as the Amazon, Central Africa
and Southern Asia.

Figure 5.1: Global map of drought hazard.

Looking now at the regional scale and the results presented for, e.g. Latin America, the
semi-arid region of northeast Brazil, southern Argentina, the Gran Chaco (northern Argentina,
southeastern Bolivia and north-western Paraguay), and northeast Mexico are immediately
identified as hot spots subject to severe drought conditions, whereas the areas less prone to severe
drought conditions match the fully humid areas of north-west Amazon rainforest and the warm
temperate climates of southern Chile and south-east Brazil. In general, the spatial consistency of
drought hazard patterns with different climate conditions at the regional scale is indicative of
the applicability of the index over regions with distinct precipitation regimes.

Let us also look in detail at the link between drought hazard mapped with the MDSI and
the drought hazard pattern at the national scale, e.g. the semi-arid spaces of northeast Brazil.
In 1936, a section of northeast Brazil was officially recognized by the federal government as
having a common recurrence of drought episodes and it was delimited under the name of Drought
Polygon to augment the governmental support to the resident populations living there [35]
[36]. The initial figure of the Drought Polygon no longer exists and it was substituted by the
Semi-Arid Region of the Constitutional Fund for Financing the Northeast Brazil [36]. Currently,
the Semi-Arid Region of Northeast Brazil (SARNB) (black polygon in Fig. 5.1) covers 895,254.40
km2 and officially delimits the region that is most affected by recurrent severe droughts in the
country [36]. The geographic shape of SARNB results from the intersection of three distinct
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Figure 5.2: World map of the FAO aridity index for 19812010, as presented in [2].

climate criteria, namely [36]: (a) mean annual precipitation inferior to 800 mm; (b) aridity index
value inferior to 0.5 (as defined by [29] and computed from the climatological precipitation and
potential evapotranspiration normals between 1961 and 1990); and (c) more than 60% of days
under soil moisture deficit between 1970 and 1990 (computed with a daily model of soil water
balance that includes precipitation, evapotranspiration and soil parameters). The results shown
in Fig. 5.1 confirm that the geographic distribution of the drought hazard computed with MDSI
for northeast Brazil is overall consistent with the geometric shape of SARNB. The exceedance
probability of severe drought events inside the SARNB is at least double the corresponding
percentage in its vicinity (between 20− 75% inside and ≤ 10% outside). These results seem to
emphasize the validity of MDSI and lend additional support to its use for estimating drought
hazard from national to global scales. Since the MDSI is standardized and only based in monthly
precipitation totals, it is useful to compare drought hazard across different climatic regions and
time periods.

Since available water resources in semiarid areas are often insufficient to permanently meet
the demands of human activities, these outcomes highlight the aggravated risk for food security
and confirm the need for the implementation of drought mitigation and adaptation measures
in those regions. Nevertheless, but interestingly though, is the fact that some humid areas in
wealthy regions, such as Northwest France, Southeast England, Southeast Brazil, Uruguay, and
Southeast U.S., which are extensively exploited for agriculture and livestock production, show
some moderate drought hazard that must be monitored as future trends show an increase of
drought frequency and intensity for these regions [37].

5.2 Drought Exposure

Two modeling approaches for computing a global map of drought exposure were tested: (1)
compensatory; and (2) non-compensatory. A correlation analysis was done with the maximum
of the four normalized exposure indicators per sub-national region and the outputs of models
(1) and (2) to analyze how individual indicators were contributing to the distribution of overall
exposure values. The results presented in Figure 5.3 (a) show a good agreement between the
maximum value of normalized indicators per sub-national region and the outputs of both models,
with correlation coefficients of 0.96 and 0.99 for compensatory and non-compensatory approaches,
respectively, at the 5% significance level.
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Figure 5.3: Correlation analysis of exposure values computed with (red) compensatory; and (green)
non-compensatory approaches: (a) model val;ues as function of maximum indicators’ inputs
per sub-national region; (b) non-compensatory model values as function of compensatory
model values per sub-national region.

Since correlation values are positive, these results demonstrate that as long as the values
of at least one exposure indicator increase, exposure will increase as well from both models.
Nevertheless, and although both models show a very high positive correlation with the maximum
value of the four normalized indicators, the results from Figure 5.3 (b) highlight the fact that
the compensatory approach minimizes the variability of exposure values to the interval [0, 0.5].
These results support the idea that low values in one or more indicators will reduce regional
exposure, even if the values for the remaining indicators are high.

To analyze the discourse of the previous paragraph, let us look in detail at the numbers in
Table 5.1. The rows of the table are representative of the 17 sub-national regions with the highest
compensatory drought exposure values, and are ranked by their descending order (column “C”).
The detailed analysis of the values in Table 5.1 shows that the compensatory model suffers from a
number of pitfalls: as it assumes that low values in one or more indicators counterbalance the high
values on other indicators, it lessens regional exposure and smooths the regional variability from
input indicators. Therefore, the compensatory approach does neither guarantee the representation
of regional extreme exposure values, nor the absolute contribution of single indicators to final
regional exposure. Let us look in detail, for example, at Dki Jakarta region, Indonesia. Although
worldwide this is the region with the highest population density (as mapped by the GPWv4
dataset, subsection 3.2.2), its compensatory exposure value is almost half of that for Rangpur
region, Bangladesh, which is characterized by the highest percentage of territory covered by
agriculture. The compensatory approach considers that Dki Jakarta is less exposed because only
one indicator is showing high values, i.e. population density, whereas Rangpur region has also an
high livestock production. As discussed before, a continuous urban area cannot be highly covered
by agriculture nor simultaneously accommodate infrastructures for high livestock production,
but it is still extremely exposed because the number of people living there is comparatively high
to that of other regions. On the other hand, since the non-compensatory approach looks at single
indicators independently, it classifies Dki Jakarta as exposed as Rangpur.

In Figure 5.4 one presents the global exposure map computed at the sub-national level with
the non-compensatory DEA model. In short, results show that inhospitable regions, like tundras,
deserts, and tropical forests are the least exposed areas to drought in the world. Since there is
no or almost none human population, domestic animals, agriculture or industry in those regions,
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Table 5.1: Sub-national regions with the highest compensatory drought exposure values and respective:
non-compensatory exposure values and normalized indicators’ values.

Region Country NC1 C2 Pop3 Agr4 Ldens5 IndDom6

Rangpur Bangladesh 1.000 0.487 0.074 1.000 0.870 0.002
Rajshahi Bangladesh 0.965 0.466 0.079 0.944 0.840 0.002
Khulna Bangladesh 0.775 0.371 0.063 0.770 0.649 0.001
Dhaka Bangladesh 0.871 0.366 0.118 0.562 0.782 0.001
Kano Nigeria 0.764 0.357 0.041 0.713 0.672 0.003
Ha Noi City Vietnam 1.000 0.332 0.312 0.098 0.914 0.005
Katsina Nigeria 0.822 0.320 0.022 0.497 0.760 0.001
West Bengal India 0.777 0.319 0.081 0.481 0.706 0.006
Haryana India 1.000 0.300 0.042 0.075 0.903 0.181
Delhi India 0.958 0.297 0.740 0.084 0.253 0.110
Dki Jakarta Indonesia 1.000 0.297 1.000 0.021 0.142 0.024
Ha Nam Vietnam 1.000 0.285 0.071 0.064 1.000 0.004
Manouba Tunisia 0.994 0.282 0.015 0.122 0.982 0.010
Hung Yen Viet Nam 0.971 0.282 0.092 0.071 0.962 0.004
Punjab Pakistan 0.806 0.282 0.037 0.265 0.623 0.202
Lwengo Uganda 0.945 0.281 0.019 0.177 0.929 0.000
Barisal Bangladesh 0.707 0.280 0.067 0.398 0.653 0.001
Quassim Saudi Arabia 1.000 0.277 0.002 0.030 0.077 1.000
1NC: Non-compensatory
2C: Compensatory
3Pop: Population density (people per sq. km of land area)
4Agr: Agricultural irrigated land (% of total agricultural land)
5Ldens: Livestock density (domestic animals per sq. km of land area)
6IndDom: Industrial and domestic water withdrawal as % of total renewable water resources (%)

this is an expected result and sustain the accuracy of the model for computing a map of global
drought exposure.

Figure 5.4: Global map of drought exposure.

Let us now look in more detail at the spatial distribution and intensity of exposure to drought
in Latin America (Figure 5.5). On the one hand, and as similar as for the global context, the
arid and semiarid regions of Latin America, such as South and West Argentina, North and
South Chile, and North-West of Mexico are less exposed to drought. These areas have very
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low population density and are barely used for agriculture, livestock or industrial activities.
Therefore, direct or indirect human exposure to drought is none or almost nonexistent there.
A similar situation occurs for the cross country sub-national regions covered by the Amazon
humid ecosystem. The administrative regions comprised within this ecosystem are distinctly
marked and categorized by an exposure to drought less than that of the remaining regions of the
respective countries, which are not included in this ecosystem.

Figure 5.5: Latin American map of drought exposure.

Turning now to the exposed sub-national regions, we would like to highlight those of South to
Southeast Brazil, North-West Argentina, Cuba, Southeast Mexico and some scattered areas in
the west coast of South-America. According to [38], South and Southeast Brazil produce together
more than 70% of the agriculture in the country, namely: the south is Brazil’s largest tobacco
producer and the world’s largest exporter, whereas southeast produces almost 50% of the nation’s
fruit and hosts 60% of agribusiness companies. In Argentina, the most exposed areas are the
Chaco plain – fertile lowland in the northen region with subtropical rainforests and cotton farms;
and the central Pampas – flat, fertile plains (a mix of humid and semi-arid areas) which provide
much of Argentina’s agriculture including raising of sheep and cattle, and wheat, corn, soybean
and fodder crops. In the case of the tropical rain forest of Southeast Mexico, fifty percent of it
has been cut down and extensive natural pastures and field crops have been established in its
place over the last 40 years [39]. Under these particular conditions and together with population
increases of up to 207.1% for some municipalities [39], multispecies agroforestry cropping systems
with cattle raising have developed and are a means by which the peasant families are able to
maintain self-subsistence production. A remarkable feature of exposure to drought in Cuba is
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the fact that 60% of its land is appropriate for agriculture, whereas the agricultural area in the
other Latin American countries is about 34% of total land in average [40].

Interesting also to note that the geographical region of the Central American Dry Corridor
(CADC) that extends over Guatemala, El Salvador, Honduras and Nicaragua is more exposed
to drought than the sub-national regions of the respective countries not included in the CADC.
Even that Central America is located in a tropical region with low hydric stress in a large part
of its territory, drought risk is mentioned in many studies related to the CADC, as the impacts
of droughts and floods usually threaten food security in the region. It is common to observe
widespread impacts to these extreme events due to high exposure related to the dependency
of populations on subsistence agriculture and livestock [41] [42] [43]. Indeed, from a total of
10.5 millions of people that live in the rural areas of the dry tropics (almost all in Nicaragua,
Honduras, and Guatemala), close to 60% depend on subsistence agriculture and of deteriorated
livelihoods [42]. On the other hand, for territories not covered by the CADC, e.g. Costa Rica,
drought affects water supply for human consumption, agriculture, cattle rising and tourism [42]
[43].

5.3 Drought Vulnerability

To evaluate and select the most suitable method for mapping global drought vulnerability, we
computed and compared the mean distances between regional vulnerability ranks derived from
the outputs of the models described in subsection 3.3 and the median regional vulnerability rank
computed from the ensemble of all models, as described in subsection 4.4. We compare eight
models that are tested for the aggregation of vulnerability factors derived from compensatory and
non-compensatory conjunction of indicators by means of three approaches: arithmetic, geometric
and the product.

In Figure 5.6, we vertically represent the distribution of vulnerability ranks computed for each
administrative region by means of the tested models; regions are sorted horizontally in ascending
order of the median rank computed from the ensemble of all models. Since the minimum and
maximum ensemble values represent the limits of the interval in which regional vulnerability
ranks fluctuate, then the most representative and robust measure of central tendency of the
regional members of the ensemble, or general rank of regional vulnerability, is the median of the
ensemble [34], as previously described in subsection 4.4.

Overall and with a single exception, the regional ranks derived from the non-compensatory
conjunction of indicators within vulnerability factors are closer to the median of regional ranks
computed from the ensemble of all models. The complete list of mean absolute distances to the
median of regional ranks are presented in Table 5.2. The models showing shortest and largest
mean ranking distances are, respectively anCompV uln and aCompV uln. These models are
represented, respectively, by green and red dots in Figure 5.6.

Table 5.2: Mean distance of sub-national ranks to the median sub-national rank of the ensemble computed
with different vulnerability models.

anComp
Vuln

gnComp
Vuln

pnComp
Vuln

aComp
Vuln

gComp
Vuln

pComp
Vuln

wanComp
Vuln

waComp
Vuln

medRi 81.67 83.88 96.59 181.23 146.59 96.15 119.57 93.12

To evaluate the reasons for the disparities in the distances between compensatory and non-
compensatory models, let us look in detail at the outputs of anCompV uln and aCompV uln for
six regions presented in Table 5.3. To ease the comparison, we make available the distribution of
normalized physical vulnerability indicators for the presented regions. First, and as similar as for
the exposure analysis performed in subsection 5.2, we immediately perceive that the asymptotic
properties of the compensatory models lead to an unsatisfactory representation of vulnerability
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Figure 5.6: Vulnerability to drought at sub-national regions ordered by the median ensemble rank: (black
vertical lines) range of ensemble rank values; (red dots) rank of sub-national regions based on
the model with maximum distance to median rank; (green dots) rank of sub-national regions
based on the model with minimum distance to median rank.

that is alleviated for the regional cases exhibiting extreme (contrasting) values for single (some of
the) indicators within factors. For example, for regions that do not present important fluctuations
of the normalized indicators, like Oestfold or Wanganui-m. (Table 5.3), both models perform
alike. On the other hand, for regions that show a dispersed distribution of normalized physical
indicators, like Zombo, Butha Buthe or Ngamiland, then the regional vulnerability to drought
computed with the compensatory model is half of that computed with the non-compensatory
approach. By smoothing regional discrepancies in the indicators’ values, the compensatory model
lessens vulnerability, causes regional values to converge asymptotically and the regional rankings
to positioning distant from those attained with the non-compensatory model. For example, in a
compensatory model it is assumed that the presence of irrigation infrastructures, e.g. like in
the Ngamiland region, counterbalances a low water storage capacity for the region. From our
viewpoint this is not the case and irrigation structures are useful only if water is able to be stored
and available to be pumped for specific sectors of activity.

In Figure 5.7 we map the social (a), economic (b) and physical (c) factors computed with the
non-compensatory approach and in Figure 5.8 we present the global vulnerability map computed
with the model anCompV uln. Overall, results indicate that Central America, Northwest of
South America, Africa – with the exception of South Africa, Central and South Asia are the most
vulnerable regions to drought in the world. A detailed analysis of the factor maps presented in
Figure 5.7, suggests that relatively high values of vulnerability to drought in Africa and Central
America are function of simultaneously low physical, social and economic capacity. On the other
hand, for South America and Central Asia, vulnerability is mainly due to a lack of physical
capacity, whereas in South Asia there is a deficit of socio-economic capacity to manage the
impacts of drought events.
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Table 5.3: Indicators of physical factors for illustrative sub-national regions and respective vulnerability
values computed models of average combination of non-compensatory (anCompV uln) and
compensatory (aCompV uln) aggregation of indicators.

Region (Country)
Zombo

(Uganda)

Butha

Buthe

(Lesotho)

Ngamiland

(Botswana)

O’Higgins

(Chile)

Oestfold

(Nor-

way)

Wanganui-

m. (New

Zealand)

Model
anCompV uln 0.999 0.983 0.941 0.521 0.353 0.530

aCompV uln 0.573 0.500 0.475 0.446 0.353 0.458

Factor Indicators

Phys.
Water
Stor.

0.000 0.000 0.980 0.763 0.808 0.905

Road

Dens.

0.612 0.224 0.817 0.807 0.721 0.918

Irrigated

land

1.000 0.997 0.000 0.832 0.948 0.993

Regarding Latin America, the most striking result that emerges from the vulnerability analysis
at the national level is the high intensity spot located at the middle latitude, namely covering the
countries of Guatemala, El Salvador, Honduras and Nicaragua. Central America’s population is
growing rapidly, with average annual growth rates over the past ten years ranging from 1.6% in
Panama to 2.6% in Honduras and Nicaragua [44]. Population growth increases exposure, as there
are more people for a disaster to impact and because more assets (agriculture and livestock) settle
in human managed areas (as previously discussed in subsection 5.2). In addition, population
growth is related to poverty and this is a critical indicator underlying the economic vulnerability
factor [45]. In these countries, an inverse relationship has been demonstrated between per capita
GDP and total fertility rates, with countries having some of the highest fertility rates in the
region among the poorest [44]. In addition, these countries show the highest percentage of rural
population for Latin America. Rural societies may be more vulnerable to drought because of
lower incomes and more dependence on a locally based resource economy (e.g. self-subsistence
agriculture) [46].

On the other hand, it is also possible to identify intra-national differences of vulnerability to
drought by sub-national administrative level, which are captured mainly by spatial discrepancies
of physical indicators within a country. For example, North-West Brazil is more vulnerable to
drought than the East and the South of the country; the fragmentation inside the nation is due
to limited road network, water storage and irrigation structures in the regions covered by the
Amazon forest.

5.4 Drought Risk

A final global drought risk map was computed at the first sub-national administrative level by
means of Equation 2.1 and the products presented in Figs. 5.1, 5.4, and 5.8. The results on
global drought risk are presented in Figure 5.9. At the first glance, one immediately perceives
that regions with low or no exposure to drought (Fig. 5.4) show also low or no drought risk,
namely tundras, deserts, and tropical forests. Tundras and tropical forests correspond also to
the regions that are less affected by drought events (Fig. 5.1). Therefore, the remaining regions
of the world are affected by more or less hazardous drought events and the risk depends on the
degree of exposure and coping capacity (resilience in opposition to vulnerability, Fig. 5.8) to
absorb or recover from the impacts of a drought. For example, the drought risk in U.S. is lower
than Western Europe, and this last is lower than in South Asia.
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Figure 5.7: Global maps of drought vulnerability factors computed with the DEA approach.

To finish the discussion and focus in the problem of drought risk in Latin America, we would
like to draw attention to two particular cross-country regions: the CADC and the Southeast
Brazil/Northeast Argentina. The common determinant of risk in these regions is drought
exposure: it is similarly high because both regions are densely populated (rural communities
in CADC in contrast to urban communities in Brazil/Argentina) and resemble by having large
areas allocated for agricultural production (self-subsistence in CADC in contrast to cash crops in
Brazil/Argentina). The distinctive determinants are the higher vulnerability in CADC and the
higher hazard in Brazil/Argentina. Even though Brazil/Argentina have more economic, social
and infrastructural resources to mitigate and delay the effects of a drought, the drought risk in
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Figure 5.8: Global map of drought vulnerability.

the east coast is high because severe and prolonged droughts often strike there. Drought events
that spread over several years will have serious economic and social impacts from the local to
national scales as those regions are the centers of primary sectors of activity of the respective
countries. On the other hand, drought risk in the Central America is high because the subsistence
of typical rural communities depend on yearly crop yields. Therefore, rare and short drought
events of mild intensity that strike during growing period of rainfed crops can have serious
impacts on local populations that do not have the economic, social and physical abilities to cope
with it. The results of this study show that although different in structure and composition,
both regions require great attention from stakeholders, policymakers, scientific networks and
the respective communities, for defining adequate mitigation and adaptation measures, while
increasing sustainability and bring down the impacts of future drought events.

Figure 5.9: Global map of drought risk.
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6 Conclusions

This technical report presents the formulation, validation and selection of a global drought risk
model that is derived from the combination of global drought hazard, exposure and vulnerability
determinants. An extended analysis of the attained results focus on Latin America, as this study
is part of the activities developed in the framework of Component 3 of the second phase of the
Programme EUROCLIMA: “Sustainable Agriculture, Food Security and Climate Change in Latin
America: Strengthening the capacities of key stakeholders to adapt agriculture to climate change
and mitigate its effects”. We decided to conduct our analysis from a global to a continental
perspective (in order to place Latin America in the globe), and finally to look at the national
and sub-national scales of risk and its determinants in Latin America, as the models we propose
are of relative/standardized intensity. Since the approach is relative and Latin America is part of
a global community that interact, share and support each other social, economic and physically,
each country (or sub-national administrative region, or local area) is compared with each other
and ranked according to some predefined or empirically determined benchmark derived from the
environmental, physical, economic and social characteristics of the analyzed regions.

We propose a data driven approach for computing each determinant of risk and derive a
final global map based on the theoretical formulation proposed by the UNSDRI [1]. Drought
risk is computed at the sub-national administrative level to facilitate the management of global
layers and their association on a fix and common Minimum Mapping Unit (MMU). Moreover,
products delivered at the level of administrative regions are also useful and easy to manipulate
by stakeholders and policy makers. Each determinant of risk is formulated independently of
each other and validated on its own. The results presented in this report are promising and in
general match the expected patterns of global drought determinants and risk. To the best of
our knowledge, this is the first attempt to systematically map drought risk and its components
at the global level by means of a consistent and standardized approach and using high spatial
resolution input datasets of analysis that meet the interests of stakeholders and policymakers.

Nevertheless, there are several points that can be used for discussion and improvement of
the final products. Regarding drought hazard, the main difficulties relate with the definition of
thresholds to identify drought onset and end, as well as the magnitude of droughts for which
events are considered hazardous. In this report, we describe a methodological approach that
focus on an optimized classification algorithm to determine the onset and end of a drought.
This can be fine tuned by using other approaches or by expert knowledge. In addition, the
methodological approach proposes the use of the median global standardized drought severity as
a reference to identify hazardous drought events. Although the presented results show a good
match with the global occurrence of historical drought events reported in the literature, we are
of the opinion that this threshold can also be fine tuned nationally or identified locally by expert
knowledge to improve the accuracy of the method at an higher spatial resolution.

Drought exposure is computed by combining thematic geographic layers of population and
livestock density, agriculture intensity and water pressure for industrial and domestic use. These
layers have different input spatial resolution, encoding formats and were uniformly generalized
at the sub-national administrative level. We report four types of production errors and/or
limitations in the geographic datasets that can lessen the quality of the final exposure layer:
thematic accuracy, geographic positioning, reference date of input datasets, and the generalization
process to a common MMU. Moreover, as the final exposure map is a combination of these
generalized layers, a propagation of errors can also reduce the accuracy of the final results. This
propagation process is more critical because we have based our analyses on global datasets that
might have a different accuracy for different geographic regions. A neater solution would be to
use an hybrid product derived by merging local to regional datasets of improved thematic and
geographic accuracy. For example, for Europe, the distribution of agriculture could be improved
with the use of the CORINE Land Cover (CLC) [47], and in Brazil with the use of the national
Land Use map [48]. However, the processing of local products raises the problem of thematic
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harmonization: for example, the harmonization of the CLC classification system with that of
the Brazilian land use map and other regional products for, e.g. the United States or Australia,
is not straightforward and might introduce larger errors in the global equilibrium of relative
exposure. So far, a limitation of the proposed approach is the fact that only human managed
regions are analyzed, i.e. no environmental layers of protected areas, degraded ecosystems and
others are considered in the model.

Regarding vulnerability, a major limitation of the proposed approach is the use of national
information for computing the model – it might be criticized by the lack of spatial detail.
This solution is the best compromise for the time being, since harmonized databases with
socio-economic information at sub-national administrative level were not freely retrieved at
the global level. Nevertheless, it is important to highlight that in the case this information
would be available, other difficulties on their harmonization would arise. For example, the
intra-national management of regional disparities is not easily understood when a hazard strikes:
some countries might set out immediate national support to their poorer regions and others do
not have this capacity. The richest region in some poor country might not respond to an hazard
alike the poorest region in some rich country. Therefore, we are of the opinion that the use of
socio-economic factors at the national level is a limitation in this study, but it is simultaneously
a good compromise between unknown multi-scale relationships (that would increase the bias in
the model and lower thematic accuracy) and output knowledge of high spatial resolution. A
second limitation relates with the selection of the model. We based our decision on a internal
validation procedure that votes the best model as the one giving regional vulnerability ranks
that approximate the median of the ensemble of all models tested. A neater solution could be
tested, but the absence of reference data for performing an independent validation reduces the
lack of valid testing options.

Regarding drought risk in Latin America, attained results show that hazard is higher in
Southeast and Northeast Brazil, between the Northeast and Southwest of Argentina, as well as
the whole Southern part of the country; exposure is higher in Southeast Brazil and Northeast
Argentina, as well as in the Central American Dry Corridor (CADC); vulnerability is higher in
CADC region. Overall, and due to regional differences in the characteristics of its determinants,
drought risk is more prominent in Central America and Southeast of South America. Since
the determinants of risk vary in these areas, we are of the opinion that there are no single
management approximations to drought mitigation and adaptation measures should be evaluated
independently and fit to the demands of each case.
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